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Calculating the
Probability of Rare
Events: Why Settle for
an Approximation?
Harold S. Luft and Byron Wm. Brown, Jr.

Objective. Health services researchers often need to compute the probability of observ-
ing a certain number of events when only a few such events are expected. Our objective
is to show that the standard approaches (Poisson, binomial, and normal approximations)
are inappropriate in such instances, and to suggest an alternative.
Data Sources. Patients undergoing cholecystectomy (34,234) in 465 California hospitals
in 1983 are used to demonstrate the biases arising from various methods of calculating
the probability of observing a given number of deaths in each hospital. Similar data from
other procedures and diagnoses with lower and higher mortality rates are also used for
illustration.
Study Design. The computational methods to derive probabilities using the Poisson,
normal, simulation, and exact probabilities are discussed. Using a previously developed
risk factor model, the probability of observing the actual number of deaths (or more) is
calculated given the expectation of death for each patient in each hospital. Results for the
four methods are compared, showing the types of random and systematic errors in the
Poisson, normal, and simulation approaches.
Data Collection. Routinely collected hospital discharge abstract data were provided by
the California Office of Statewide Planning and Development.
Principal Findings. The Poisson and normal approximations are often biased substan-
tially in calculating upper-tail p-values, especially when the expected number of adverse
outcomes is less than five. Simulations allow unbiased calculations, and the degree of
random error can be made arbitrarily small given enough trials. Exact calculations using
a simple recursive algorithm can be done very efficiently on either a mainframe or
personal computer. For example, the whole set of cholecystectomy patients can be
assessed in less than 90 seconds on a Macintosh0.1
Conclusions. Calculating the probability of observing a small number of events using
standard approaches may result in substantial errors. The availability of a simple and
inexpensive method of calculating these probabilities exactly can avoid these errors.

Keywords. Statistics, small-area analysis, risk adjustments, computational techniques
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Investigators in the health services research setting frequently observe
a particular outcome in a group of patients and wish to calculate the
probability that that outcome occurs by chance. For example, a large
data base may be used to determine the risk factors associated with
patient mortality for patients undergoing a particular procedure.
These risk factors are then applied to the mix of patients in specific
hospitals and the expected number of deaths is compared with the
observed number. Hospitals with significantly higher than expected
death rates may then be examined for potential quality of care prob-
lems. Alternatively, one may be examining the number of asthma
deaths across geographic areas and wish to know whether the numbers
observed in certain counties are excessive (Weiss and Wagener 1990).
Likewise, small-area admission rates are usually calculated relative to a
demographically adjusted expected number. In studies like these, there
are usually large numbers of observed and expected cases in each
hospital, small geographic area, or similar unit of observation. How-
ever, it is not uncommon that some of the smaller "sites" will have fewer
than five expected cases.

The usual approach in such situations is to calculate the probabil-
ity based upon the Poisson distribution or the normal approximation to
the binomial. For example, Weiss and Wagener (1990) used a chi-
square test if the number of observed deaths was 30 or more; other-
wise, the probability was computed using a Poisson distribution with
mean equal to the expected number of deaths. Escarce and Kelley
(1990) used a chi-square test when both observed deaths and expected
deaths exceeded five; otherwise, tests based on the binomial distribu-
tion were used.

The usual rule of thumb offered in statistics texts is that the
normal distribution is a reasonably good approximation if the number
of expected outcomes (e. g., deaths) is five or more (Fleiss 1981). How-
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ever, there is generally little discussion of the risks associated with using
the normal when the expected number of cases is small, and it is often
not recognized that the Poisson is also an approximation with a similar
rule of thumb. In particular, the Poisson and normal distributions may
provide poor approximations of the true probabilities when the num-
bers of the observed and expected deaths are small. This may lead to
the incorrect interpretation of some situations as being "significant
statistically" when they are not, and contrariwise, to the failure to
detect statistically significant aberrations. This article provides
examples of these problems in "real world" health services research
situations and a practical alternative for the calculation of probabilities
that is feasible on personal or mainframe computers even for large-
scale analyses, that is, many study units with many subjects per unit.

DATA AND METHODS

To illustrate the problem and the proposed solutions, we use hospital
discharge abstract data obtained from the California Office of Statewide
Health Planning and Development for patients discharged in 1983 from
California hospitals. We first provide examples of the problems associ-
ated with various calculation approaches using patients undergoing cho-
lecystectomy. We then test implications of various approaches on a series
of diagnoses and procedures with various death rates and numbers of
patients per hospital (see Table 1). The overall mortality rate for chole-
cystectomy patients in our data is 1.16 percent, which is approximately
in the middle of the range among the patient groups studied; hysterec-
tomy has a death rate of 0.05 percent, and acute myocardial infarction is
at the other extreme with a 15.0 percent death rate. The average num-
ber of cholecystectomy patients per hospital is 74. By contrast, average
volumes range from 244 coronary artery bypass graft (CABG) patients
to 21 hip replacement patients per hospital.

The risk of death is usually not the same for all patients, so it is
important to compute an expected probability of death for each
patient. In each instance, we excluded patients for whom the procedure
seemed not to be the reason for admission to the hospital, for example,
cholecystectomy in response to abdominal trauma. A logistic regres-
sion was estimated for each patient group using inpatient death or
survival as the dependent variable and age, gender, chronic comorbidi-
ties, emergency status, and selected related procedures as the indepen-
dent variables. By applying the estimated coefficients from the logistic
regression to each patient's characteristics, we obtain an estimated
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probability of death. (The particular variables used and the coefficients
of the logistic regressions are not crucial for this discussion. They may
be obtained from the authors.) We then produce a file with three data
items for each patient: (1) the index j for the hospital in which the
patient was treated, (2) the estimated probability of death (pij) for
patient i in hospital j, and (3) whether the patient actually died (di,j)
where 1 = death, 0 = survival. This patient-level file can then be used
to calculate statistics at the hospital level by aggregating patients in
each hospital.

The usual problem is that some number of deaths is observed at a
hospital d = dij when p E= pPij were expected, so the task at
hand is to calculate the probability of this event or one more extreme
(i.e., more deaths) occurring by chance. In this example the probabil-
ity of death will vary from patient to patient. If there are nj patients in
thejth hospital, this is formally a mixture of nj Bernoulli distributions,
and the total number of deaths d*1 among the nj patients is said to have
a Lexis distribution (Murphy 1979). The Lexis distribution is rarely
used explicitly for analytic purposes; it depends on the individual prob-
abilities of death and creates computational problems if used to obtain
exact results.

There are several approaches to the calculation of the probability
of observing d** or more deaths in thejth hospital: the determination of
the probability by an exact calculation, approximations based on the
Poisson and normal distributions, and simulations. In each case we
will assume that the estimated probabilities of death for each patient
are known without error. While this is not generally the case, the
logistic regressions are based on far more patients than occur in any
single hospital. (For example, there are 34,234 cholecystectomy
patients in our data file; the most in any one hospital is 445.) Thus, the
chance errors associated with the estimation of the patient-level proba-
bilities are small relative to the role of chance in the observed outcomes
among the patient population of any given hospital. This is not to
imply, however, that large numbers assure the inclusion of the correct
risk factors, but that given the state of knowledge about the relevant
risk factors, the underlying probabilities are assumed to be known.
Note that this is the standard approach in the literature (Weiss and
Wagener 1990; Escarce and Kelley 1990; Flood, Scott, Ewy, et al.
1987).

To simplify the following discussion, we will focus on only patients
in a given hospital, so we can drop thej subscript. The probability of d*
or more deaths, where d* is small, is more easily calculated by first
computing its complement, the probability of observing fewer than
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d* deaths. Likewise, the probability of survival for a given patient, qi,
is 1 - pi. If there are two patients, the probability that both will survive
is ql *q2. If there are three patients, the probability that all will survive is
ql*q2*q3. One minus these products is the likelihood of one or more
deaths among these patients. For two or more deaths, one first calculates
the probability of no deaths, as before, plus all of the ways in which one
death could occur. The latter is the probability that the first patient dies,
pl, times the probability that all of the others survive, plus the probabil-
ity that the second patient dies times the probability that all of the others
survive, and so forth. A more complete discussion of the exact calcula-
tions is in an appendix available from the authors.

The exact probability calculations are quite straightforward and
easily coded in programming languages such as FORTRAN or C. The
reason they are not routinely implemented in most statistical packages
is because of the computational costs incurred using the most obvious
programming approaches. This cost is roughly proportional to the
number of patients raised to the d* power. Thus, for 100 patients, the
computer time required to compute the probability of five or more
deaths is 1004, or 100,000,000 times that required to compute the
probability of one or more deaths.

For large numbers one can rely on the fact that well-known distri-
butions approximate the exact probabilities. For example, when each
patient either lives or dies with a known probability, the probability
that d* or more deaths is observed is approximately normal, provided
the expected number of deaths is not too small. (The general rule of
thumb for "too small" is fewer than five.) A two-step process can then
be used to calculate the probability of observing d* or more deaths.
First, one computes the standardized deviate (the Z-score), which is
essentially the number of standard deviations the observed value is
away from the mean or expected value. (One usually subtracts 1/2
from the difference between the observed value and the mean to adjust
for the fact that deaths occur in integral amounts, but the normal is
continuous. This is called the continuity correction.) Since the proba-
bility of death for each patient, pi, is assumed to be known, it is
straightforward to compute both the total number of deaths expected
and the standard deviation, which is the square root of Epjqi. (Note that
if the probability of death for all patients were the same, say p*, then
the standard deviation is the square root of np *(1 - p *), the familiar
binomial expression.) The second step is the conversion of the Z-score
to a one-tailed probability. The standard normal tables can be used for
this purpose, or there are quite precise simple formulas that can be
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incorporated in a computer program. Most statistical packages include
such a program for normal tail areas.

When events occur very infrequently, as is sometimes the case for
deaths in certain diagnostic or procedure groupings, the number of
observed deaths, d*, may be approximately Poisson distributed. With
the Poisson distribution, the calculation of the probability of observing
d* or more deaths depends only on the expected number of deaths,
s = npi. The formula is Prob{d.d*} = 1 - {e-s + e-sS + ess2/2! +
. . . + e-ssd*l/(d*-1)!}. The calculation of the probabilities is simple
and fast, and the approximation will be satisfactory if the pi are all
small and fairly uniform but the n is large enough so that s > 5. Again,
standard statistical packages usually have a component available to
calculate tail probabilities based on the Poisson distribution.

A fourth approach to calculating the probability of observing a
given number of deaths is simulation. This allows one to estimate the
actual distribution of outcomes likely in a set of patients, each of whom
has a specific probability of dying. The approach is straightforward. A
number is drawn from a uniform random distribution with a range
from 0 to 1. If the number drawn is less than the patient's probability of
dying, the patient is counted as dead, otherwise, alive. A new number
is drawn for each patient in the hospital, thus obtaining an "observed"
number of deaths given a single set of n random draws. If one then
repeats this process K times, one can then count the number of times
(i.e., simulations of the n patients) for which d* or more deaths are
observed. That number divided by K is the estimated probability of
observing that many or more deaths.

Unlike the exact calculation of p and the normal and Poisson
approximations, which will always provide the same result given the
same set of patient probabilities, simulations introduce random varia-
bility into the calculation, quite apart from the variability in outcomes
that one is trying to examine. This variability can be of some concern
in situations involving low-probability events. For example, if the true
tail probability for a given outcome (d*) is 1 percent, there is a 5
percent chance that a simulation with 1,000 trials could yield an esti-
mate as low as 0.4 percent or as high as 1.6 percent. These limits of
precision can be substantially reduced if the number of simulations is
increased. The advantage of the simulation (or Monte Carlo) method
is that it provides an unbiased estimate of the desired probability (if the
random number generator is valid), with precision depending only on
the number of simulations. The disadvantage is the computing time or
cost since the desired precision may require a great number of simula-
tions when the true tail probability is small, as in our applications.
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COMPARISON OF
ALTERNATIVE MEASURES

The set of cholecystectomy patients provides an example of applying
the various approaches. The number of patients in the 465 hospitals
ranges from 2 to 445, with the total across all hospitals being 34,234.
The expected number of deaths ranges from 0.0008 to 5.3265. The
number of actual deaths ranges from 0 to 8. The general rule of thumb
is that if five or more deaths are expected, then the normal approxima-
tion is reasonable to use. The standard literature, however, does not
offer a simple rule of thumb for gauging the error that might be intro-
duced if the expected number of deaths is smaller than this, or if the
2p,ji departs much from np *( 1 - p *), where p * is the average death rate
for all patients within a particular hospital.

In this section we explore the implications of using different
approaches to approximating the probability associated with a given
number of deaths. In doing so, we use the estimated probability of
death for each individual patient, but for the moment ignore the actual
number of deaths observed in each hospital. The "gold standard' will
be the exact calculation of the probability associated with four situa-
tions: observing at least d* deaths among the patients in each hospital,
where d* ranges from 1 to 4.

Figure 1 presents the probability of observing d* or more deaths
among the cholecystectomy patients in each of the 465 hospitals in the
data set. These graphs present the probability calculated using the
normal approximation on the vertical axis and the exact probability on
the horizontal axis. (The standard deviation for each normal deviate,
Z, is based on Epiq- for that hospital rather than the binomial expres-
sion, np *(1 - p*).) Although the normal approximation seems reason-
ably good, the curves indicate some important deviations. First, there
is a "bowing" out of the curve -most noticeable for the probability of
one or more deaths but nonetheless detectable for the other outcomes
as well. That is, over much of the range, the normal approximation
tends to overestimate the true p-value associated with the number of
observed deaths relative to expected deaths. At very low probabilities,
the normal approximation seems to "bottom out" at zero. Or, putting it
another way, it reaches zero too soon, underestimating the probability
at the low end of the range. Likewise, it underestimates probabilities at
the high end. While there appears to be a fairly consistent pattern of
over- or underestimation that depends on the value of the true proba-
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Figure 1: Comparison of Probabilities Calculated Using
Normal Approximation and Exact Calculations Based on
Cholecystectomy Patients in 465 California Hospitals
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bility, there are occasional hospitals that deviate substantially from this
pattern.

Figure 2 highlights the errors more clearly by plotting the ratio of
the normal approximation to the exact probability as a function of the
expected number of deaths in the hospital. All three problems with the
normal approximation are now quite apparent. When the number of
expected deaths is very small, the normal approximation-based proba-
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Figure 2: Ratio of Probabilities Using Normal and Exact
Calculations versus Expected Number of Deaths in the
Hospital Based on Cholecystectomy Patients in 465 California
Hospitals

Probability of One or More Deaths Probability of Two or More Deaths

t 1.2

.

co
° 0.9

0

z

*s 0.3
-0
.5

A-0.0'

1.25 2.50 3.75 5.00

Expected Number of Deaths

Probability of Three or More Deaths

+

.

.+

e -

4

I

"'"14,.- ., ..

I
I

II
f

1.25 2.50 3.75 5.00

Expected Number of Deaths

Probability of Four or More Deaths

0 1.2,
N

-S 0.9'-

1 0.6
z
o 0.30

-0.0 '

1-

+

'I.

t

.

o1

1.25 2.50 3.75 5.00

Expected Number of Deaths Expected Number of Deaths

bility underestimates the true value. This problem is more extreme
close to zero. As the expected number of deaths in a "sampling unit"
(hospital) rises, the probability based on the normal approximation
rises rapidly relative to the true probability and eventually exceeds it by
up to 30 percent. Then, as the expected number of deaths increases
further, the ratio falls to asymptotically approach 1. For larger num-
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bers of observed deaths, the "safe range" for the normal approximation
to the exact values moves out to larger numbers of expected deaths.
With one or more observed deaths, expected values of 2.5 or more
seem to yield good agreement. For the probability of four or more
deaths, an expected number of deaths of 4 might be required to feel
comfortable using the normal approximation.

Figure 3 is analogous to Figure 1, except that the probabilities on
the vertical axis were calculated using the Poisson distribution. Again,
the Poisson approximation is fairly good, but with problems also
apparent. For the probability of one or more deaths, a substantial
number of instances occur in which the Poisson approximation sub-
stantially underestimates the true probability, particularly when the
probabilities are large. For two or more deaths, the Poisson outliers
tend to be overestimates when the probabilities are low and under-
estimates when they are large.

The ratios of Poisson to exact probabilities are plotted in Figure 4.
Here it is apparent that in some ways the situation is worse than was the
case for the normal approximation. With relatively small numbers of
expected deaths, the normal probabilities deviate markedly from the
exact probabilities, but the pattern of over- and underestimation is quite
predictable, and one might hope for a transformation of the normal
figures to the correct values. The Poisson probabilities, on the other
hand, are usually underestimates of the true values for d* = 1 and
overestimates for the other three cases. The percentage errors can be
quite large and, more importantly, they do not follow a consistent pat-
tern as is the case for the normal probabilities. This should not be
surprising, since the Poisson depends only on the expected number of
deaths, and thus ignores the variability among patients within a hospital.

Similar figures were developed for probabilities based on 1,000
and 10,000 simulations. While there is substantial scatter with 1,000
simulations, the approach assures the lack of bias, in contrast to the
normal and Poisson approximations. With 10,000 simulations for each
patient the scattering around the equal probability line is quite small.
In percentage terms, however, even these errors may be substantial for
very low probability events.

One way of assessing the problems associated with the various
methods of calculating probabilities is to see how often they would lead
one to misinterpret a statistically significant event as being insignifi-
cant, and vice versa. While comparison with an arbitrary p-value is not
a recommended decision rule, it is a common practice. Thus, we can
ask, if the true probability of an event is within a certain range, how

429
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Figure 3: Comparison of Probabilities Calculated Using
Poisson Approximation and Exact Calculations Based on
Cholecystectomy Patients in 465 California Hospitals
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often will the calculation based on the various alternatives be within the
same range?

In examining four possible outcomes for each of the 465 hospitals
(i.e., d* = 1, 2, 3, and 4), we have a total of 1,860 comparisons for each
method of calculation. Five categories are used, p < .001, .001 < p <
.01, .01 < p < .05, .05 < p < .10, and .10 < p. Table 2 presents the
percentage of times the normal, Poisson, and simulation approaches
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Figure 4: Comparison of Probabilities Using Poisson and
Exact Calculations versus Expected Numbers of Deaths in the
Hospital Based on Cholecystectomy Patients in 465 California
Hospitals

Probability of One or More Deaths

K 1.0

O 0.9'

0
A4

O 8
0
la

1.25 2.50 3.75 5.00

Expected Number of Deaths

Probability of Three or More Deaths

,ais -

u

4- 1 25
K

a

.312
~4

*a 3.

+0

. E_. _ . '. X

1.25 2.50 3.75 5.00

Expected Number of Deaths

Probability of Two or More Deaths

," I s ^

Me 12--,
O

a 9

0
IC

to~4 6

I4.-
0

-0,a~ 3 -...*sz 0s 1
W.

1.25 2.50 3.75 5.00

Expected Number of Deaths

Probability of Four or More Deaths

is"4

12 t

9

3,

1.25 2.50 3.7S S.00

Expected Number of Deaths

The vertical scales differ between panel 1 and the other panels. In panel 4 one point not shown has
a value of 75.

(with 1,000 and 10,000 trials) give various approximate values for the
true p. The normal approximation gives probabilities in the correct
range almost all the time for p-values of less than .001 or greater than
.10. For the range when the tests are more likely to matter, .001 to .10,
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Table 2: Distribution of Probabilities Calculated Using
Various Methods Given an Exact Probability, Based on 1, 2, 3,
and 4 or More Deaths among Cholecystectomy Patients in
California Hospitals

True Probability
p<.001 .001:5p<.01 .01I'p<.05 .05S p<.10 .10O p

Probabilities based on
normal approximation

p<.001 100.0% 84.6% 7.4% - -
.001 'p<.01 - 15.4 47.9 - -
.01 'p<.05 - - 44.7 38.5% -
.05 'p<.10 - - - 58.0 0.8%
.10 'p - - - 3.6 99.2

Probabilities based on
Poisson approximation

p<.001 100.0% 21.7% - - -
.001 'p<.01 - 78.3 20.3% - -
.01 'p<.05 - - 79.7 17.6% -
.05 'p<.10 - - - 82.4 2.2%
.10 <p - - - - 97.8

Probabilities based on
1, 000 simulations

p<.001 85.6% 8.9% - - -
.001 <p<.01 14.4 82.1 5.4% - -
.01 'p<.05 - 8.9 88.7 7.1% -
.05 'p<.10 - - 5.8 84.6 0.2%
.10 'p - - - 8.3 99.8

Probabilities based on
10, 000 simulations

p<.001 96.7% 3.7% - - -
.001 'p<.01 3.3 94.3 1.9% - -
.01 'p<.05 - 2.0 96.5 2.4% -
.05 cp<.10 - - 1.6 95.9 0.2%
.10 'p - - - 1.8 99.8

the normal approximation is biased downward. For example, 84.6 per-
cent of the times when the true tail probability is between .001 and .01,
the normal would place it below .001. When the true value is between
.05 and . 10, in 38.5 percent of the cases the normal would place it below
.05 and in 3.6 percent of the cases the normal would place it above .10.
Thus, probabilities based on the normal approximation would often
mislead an investigator to believe the findings to be more significant
than they were.

The Poisson has a similar problem as it often results in a calcu-
lated tail probability below the true value. For example, when the true
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p-value is between .001 and .01 or between .01 and .05, the Poisson
calculation results in a probability in the next-lower category more
than 20 percent of the time. In the borderline range of .05 to .10, the
Poisson approximation yields a "significant result" (i.e., p < .05) 17.6
percent of the time.

The unbiasedness of the simulation approach can be seen in the
lower part of Table 2. Except for the extreme categories, over- and
underestimates occur roughly equal numbers of times. With 1,000
simulations the errors are in the range of 11.3 percent to 17.9 percent,
while with 10,000 simulations the errors range from 3.5 percent to 5.7
percent. Although the calculations based on 1,000 simulations fall in
the correct category only somewhat more frequently than the Poisson
estimates, they are unbiased. More importantly, the probabilities
based on 10,000 simulations are always superior to the other three
approaches, although obviously still not as good as exact calculations.

BENEFITS AND COSTS
OF THE VARIOUS CALCULATION
APPROACHES

These analyses of the cholecystectomy data lead to the following obser-
vations. For very small numbers of expected deaths, all three alterna-
tives to an exact calculation yield rough approximations, that is, small
probabilities; but these may differ substantially in percentage terms
from the exact values. The simulation-based probabilities are unbiased
and provide precise estimates even for patient groups with highly
skewed probabilities of death, situations which result in particularly
poor normal and Poisson approximations. With 10,000 simulations,
the Monte Carlo errors appear to be tolerable.

In comparing the Poisson and normal approximation approaches,
the latter seem preferable. They seem equally good in the range of
three or more expected deaths. At low values of expected deaths the
normal approximation probabilities exhibit a fairly consistent pattern
of errors. This systematic bias might be modeled to provide a correc-
tion function, although we have not attempted to do so. The errors in
the Poisson estimates, however, seem to fit no such pattern.

As indicated earlier, it is possible to compute exactly the probabil-
ity of observing any number of deaths given the individual patient
probabilities. Using standard computational approaches, cost is
roughly proportional to nklk! where n is the number of patients in a
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given hospital or sampling unit and k is the number of observed deaths.
An iterative method of generating the probabilities, however, is much
simpler and its cost is roughly proportional to the number of patients
times the number of deaths observed. The Z-score and probability
calculation for the normal approximation is quite simple and its cost is
roughly proportional to the number of patients. Simulations, on the
other hand, are relatively expensive, because a large number of ran-
dom numbers, for example, 10,000, have to be generated for each
patient, but the cost is linear with respect to patients, and the simula-
tions provide the frequency counts for all values of d*.

The exact costs associated with any of these calculations depends
on the hardware and software used. In this instance relatively simple
and low-cost technology was used, a Macintoshg II with an internal
Rodime hard drive, a 68881 floating point math coprocessor and 5
megabytes of memory, although less than 60K was needed. All pro-
grams were written in Microsoft82 FORTRAN, including a uniform
random number generator following the model given in Knuth (1981).
(Copies of the programs are available from the first author.)

Both the standard rule of thumb and our examination of the
normal approximation results suggest that the normal approximation
is reasonable when the number of expected deaths is five or more. This
allows a dual approach- exact calculation if the number of expected
deaths is less than five and the normal approximation otherwise. In
fact, the exact probability code is so inexpensive we use it for all
hospitals with 15 or fewer observed deaths. For the 465 hospitals with
34,234 patients, these calculations took less than 90 seconds. In con-
trast, 10,000 simulations for the same group of patients took about 2.25
hours. (Using a SAS@*3 version on the mainframe, the exact computa-
tions took under five seconds.)

To help put this approach in perspective, we examined a pooled
data set for all California hospitals for the period 1983-1986 for the set
of nine procedures and diagnoses listed in Table 1. By pooling the data
across four years we have a better chance of replicating the type of
variability in outcomes and expected values across hospitals. Only 6
percent of the 1,828 hospital-year observations with cholecystectomy
patients would have probabilities calculated using the normal approxi-
mation. In contrast, 83 percent to 87 percent of all hospital-years could
use the normal approximation for pneumonia, stroke, acute myocar-
dial infarction (AMI), and CABG patients. For total hip replacement,
hysterectomy, and prostatectomy patients exact calculations would
always be done. Even though hospitals average 2.09 deaths among
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femur fracture patients (Table 1), 28 percent of the hospitals have five
or more expected deaths, so a normal approximation could be used.

CONCLUSIONS

While this article focused on the methods to be used for calculating
probabilities at the hospital level, the implications are broader. For
example, measuring outcomes or admission rates across small geo-
graphic units raises comparable problems in determining whether a
particular observed result is notably different from expected. A reli-
ance on just the number of patients in the denominator is not suffi-
cient. Likewise, requiring that there be a minimum number of
observed "adverse" outcomes in the numerator is also inappropriate. In
fact, the expected number of outcomes is the crucial variable in deciding
whether a formula approach such as the normal approximation is war-
ranted.

If fewer than five occurrences are expected, then the use of either
the Poisson or normal approximation may result in inaccurate proba-
bility estimates. Our analyses suggest that these errors are relatively
small in absolute magnitude, but may be large in relative terms. For
example, in one instance the estimated probability based on the normal
approximation was .0032 when the exact probability was .0298, nearly
an order of magnitude error. If one focuses on the absolute levels, then
both figures are seen to be fairly small. If one uses arbitrary cutoff
levels, however, such as .01 for a "significant outlier," then such errors
may be more harmful. Furthermore, if one is adjusting for multiple
comparisons, then the "cutoff point" often becomes quite small. With
the normal approximation, over a third of the instances in which hospi-
tals had a true p-value between .05 and .10 would have been miscalled
as being less than .05. For the Poisson, 17.6 percent of the instances in
which the true p-value was between .05 and .10 would have been
miscalled as less than .05.

Empirical analysis is difficult enough, and various errors in mea-
surement are always a threat to the validity of a study. Thus, it is
unwise to introduce additional errors into the analysis by using inap-
propriate approaches to calculating probabilities. Performing exact cal-
culations of probabilities is a simple task, although it requires some
programming rather than a simple request to a packaged data analysis
system. A stand-alone program in either FORTRAN or SAS@ requires
about two pages of code, including extensive comments (Appendixes A
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and B). Moreover, the cost of exact calculations is far from prohibitive,
even on a microcomputer, let alone a mainframe.

Recognizing that the use of normal or Poisson-based probabilities
may introduce potentially important errors and that the correct
approach is relatively simple leads us to suggest that careful attention
be paid to how one computes probabilities. For those who find it
necessary to compute probabilities in situations in which the expected
number of outcomes is more than five, the conventional approaches
are quite adequate. However, if the expected number of outcomes is
frequently less than five, and if many calculations are required, the
inclusion of specific programs to do exact calculations should not be a
major hurdle.

APPENDIX A

A Methodfor Rapid Calculation
of Exact Probabilities

The direct approach to the calculation of the exact probability of
observing d* or more deaths among a set of n patients with known
probabilities of death pi, i = 1,2 . . . n requires the computation of all
the possible combinations of 1,2 . . . (d* - 1) deaths drawn from n
patients. This computational effort is a function of n(d~1), which for
large n and d* of 4 or more is substantial.

A far more efficient approach uses intermediate sums in the com-
putational process, so the number of calculations is roughly 2*(d* -
1)*n. The method uses a series of d* cumulative sums and is best
understood using an array. The first two columns merely represent the
probability of death for the ith patient, pi, and the probability of sur-
vival, 1 - pi or qi. Subsequent columns represent the probability of
observing 0, 1, 2, . . ., d* - 1 deaths.

For the first patient, the entries are straightforward: q1 is the
probability of no deaths and Pi the probability of one death. If a second
patient is added, the probability of 0 deaths is q1 * q2; the probability of
exactly one death is q1P2 + p1q2; the probability of two deaths is PIP2. If
a third patient is involved, the probability of 0 deaths is qq2q3. The
probability of one death is the probability of the first two patients
surviving (qlq2) times the probability that the third dies plus the proba-
bility that one of the first two dies (q1p2 + p1q2) times the probability
that the third survives, or (q1P2 + p1qO).ph. The probability of two
deaths is the probability that one of the first two patients dies times the
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probability that the third patient dies (q1P2 + plq2).P3 plus the probabil-
ity of the first two patients dying times the probability that the third
survives P1P2q3.

At each stage in the calculation, the probability of 0 deaths is
merely the cumulative product of the qis. The probability of any other
number ofdeaths is the probability of one less than that number (calcu-
lated for the previous number of patients) times the probability that the
current patient dies plus the probability of that number of deaths
among the previous number of patients times the probability that the
last patient survives.

Following the explanation, the computational approach is
straightforward. It is not necessary to store the whole array; one merely
needs to keep track of the sums for the previous patient. Furthermore,
while probabilities can be computed for all possible numbers of deaths,
0, 1 . . . n, in practice one is unlikely to be interested in using the exact
calculation when the expected number of deaths is five or more. In most
situations, if the expected number of deaths is five or less, then the
likelihood of observing 15 deaths is vanishingly small. The program in
Appendix B uses such a cutoff. This program also incorporates a run-
ning sum of the pis and pji. One could forgo further exact calculations
when the Epi exceeds 5 and then rely on the normal approximation.
Since the exact calculation is so efficient, however, the program uses
the exact calculation in all instances in which the observed number of
deaths is 15 or less.

APPENDIX B

SASO Version of Calculations
* THIS PROGRAM USES AS INPUT A PATIENT-LEVEL DATASET, SORTED BY
HOSPITAL ID ("HOSPID"). IT RAS A VARIABLE CALLEDDIED", WHICH
IS A BINARY VARIABLE (1-YES, 0-NO) AND A VARIABLE CALLED
,P1, WHICH CONTAINS THE PREDICTED MORTALITY SCORE.
IT CALCULATES FOR EACH HOSPITAL 1) PL, THE LOWER TAIL PROBAILITY OF
OBSERVING D DEATHS OR FEWER AND 2) PU, THE UPPER TAIL PROBABILITY OF
OBSERVING D DEATHS OR MORE.
IF THERE ARE 15 OR FEWER DEATHS IN A GIVEN HOSPITAL, IT CALCULATES
THE EXACT PROBABILITY. OTHERWISE, IT CALCULATES THE PROBAILITY
USING A NORMAL APPROXIMTION.;

DATA TEMP;
SET (KEEP-HOSPID DIED P); * FILL IN INPUT DATA SET NAME;
BY HOSPID;
RETAIN SUfDIED SUMPRED SUMPQ SUMNPATS LAST0-LAST15;
IF DIED. OR P-. TEN DELETE;
* WHEN STARTING A NEW HOSPITAL, RESET THE RUNNING TOTALS;
IF FIRST.HOSPID THEN DO;

SUMDIED - 0;
SUMPRED - 0;
SUMPQ - 0;
SUMNPATS - 0;

END;
* INCREMENT THE RUNNING TOTALS;
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APPENDIX B (Continued)

SUMDIED - SUMDIED + DIED;
SUMPRED - SUMPRED + P;
SUMNPATS - SUMNPATS + 1;
Q - 1 - P;
SUMPQ - SUMPQ + (P*Q);
* ONLY DO THE EXACT PROBABILITY CALCULATIONS WHILE THERE ARE 15 OR;
' FEWER DEATHS IN THIS HOSPITAL;
IF SUMDIED <- 15 THEN DO;

ARRAY CURRENT I*) PROBO - PROB15;
ARRAY LAST f*J LASTO - LAST15;
IF FIRST.HOSPID THEN DO;

CURRENT(1) - Q;
CURRENT{2) - P;

END;
ELSE DO;

CURRENTI1) - LAST(1) * Q;
IF SUMNPATS <- 15 THEN DO;

DO J - 2 TO SUINPATS;
I - J - 1;
CURRENT(J) - (LAST(I) * P) + (LASTIJ) *Q);

END;
* THE VALUE OF J IS SOW SUMNPATS + 1;
CURRENT(lJ) - LAST(J-1) *P;

EN;
ELSE DO J - 2 TO 16;

I - J - 1;
CURRENT(J) - (LASTII) * P) + (LAST(J) *Q);

END;
END;
DO I - 1 TO 16;

LAST(I) - CURRENTlI);
END;

END;
IF LAST.HOSPID THEN DO;

IF SUMDIED > 15 THEN DO; * NORMAL APPROXIMTION;
PL - PROBNORM((SUMDIED + 0.5 - SUMPRED) / SQRT(SUMPQ));
PU - 1 - PROBNORM((SUNDIED - 0.5 - SUIPRED) / SQRT(SUMPQ));

END;
ELSE DO; * EXACT PROBABILITY;

IF SUNDIED - 0 THEN DO;
PU - 1;
PL - CURRENt(1);

END;
ELSE DO;

SUMPROBS - 0;
INDX - niT(SUNDIED + 0.0001);
DO I - 1 TO XDX;

SUMPROBS - SUMROBS + CURENT ( I);
END;
PU - 1 SUMPROBS;
PL - SUMPROBS + CURRENT(INDX+1);

END;
END;
OUTPUT;

END;
KEEP HOSPID SUMNPATS SUMDIED SUMPRED PL PU;

PROC PRINT;
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